Fire Testing That Helped Develop the Current Proposal for Fire Rating of PV Modules

Bill Brooks, PE

Brooks Engineering Code Official Panel Lead

Solar America Board for Codes and Standards (Solar ABCs)

September 14, 2012

ssue

- What is the impact of a PV array on the fire classification of a rated roof?
- Building code and fire officials looking for answers and regulations to enforce

Roof Fire Safety

- Reduce fire movement across the roof of a building
- Prevent fire penetration into the building

Roof Fire Class Rating

- International Building Code requires that roofs have a fire classification rating (Class A, Class B, Class C)
- Different buildings have different fire classification rating requirements
- States or local jurisdictions may enforce stricter requirements than the IBC

Solar ABCs Research Project

Investigate whether and how the presence of standoff-mounted PV arrays may affect the fire class rating of common roof covering materials.

Phases of Project

- Phase 1: Develop an understanding of the Spread of Flame test flame.
- Phase 2: Test PV modules over roofs and document the results. (Bulk of testing)

Phases of Project (cont.)

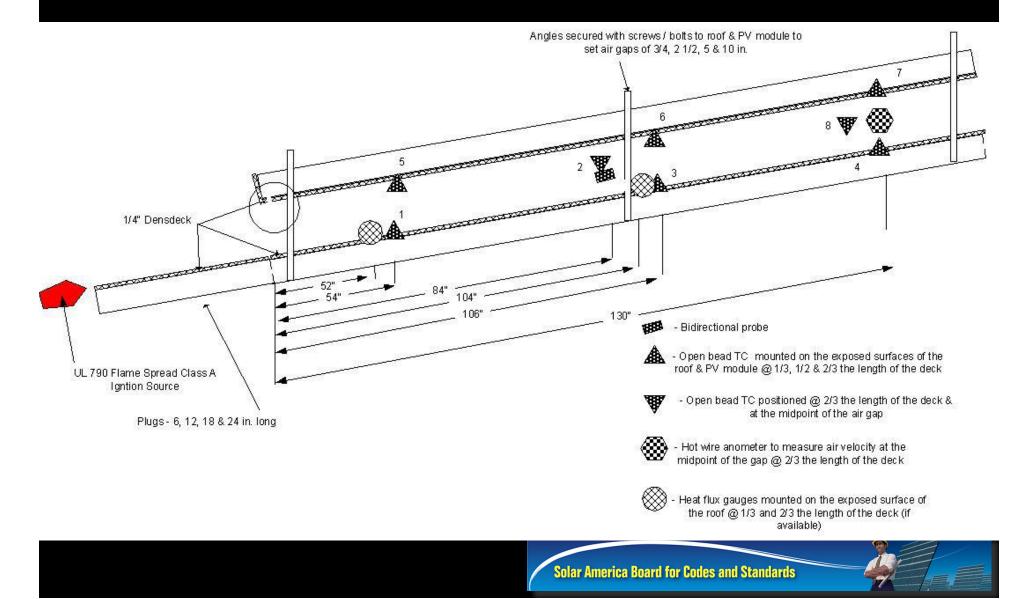
- Phase 2a: Determine if mitigation methods can cause PV modules to survive the test.
- Phase 2b: Test PV modules at angles, directly on roof, and understand heat load of burning brands.

Phases of Project (cont.)

- Phase 3: Characterization of PV Materials—Critical Radiant Flux
- Phase 4: Test the 3 SEIA 2015 IBC proposals to see if they address fire rating.
- Phase 5: Test concept of first to ignite, second to ignite concept—module/roof perimeter interface.

Phase 1: Develop an understanding of the Spread of Flame test flame.

- Use non-combustible materials to understand heat flux and temperature that fire presents to the materials tested.
- Establish baseline data of fire exposure on roof deck samples without PV according to UL 790


Phase 1: Develop an understanding of the Spread of Flame test flame.

- Understand the effect of PV module stand-off height above the roof and leading edge distance
- Determine if rail orientation impacts PV module fire performance

Instrumentation

Test Fixture for Non-Combustible Tests

Solar America Board for Codes and Standards

Results

- 5" Gap is Worst Case (10" best, 2.5" next)
- 5" is most consistent with installation methods—best cooling relative to aesthetics
- Much greater challenge to both PV and roof by conducting test with PV at leading edge.
- 12" and 24" setback decreased intensity of flame—still higher than roof alone.

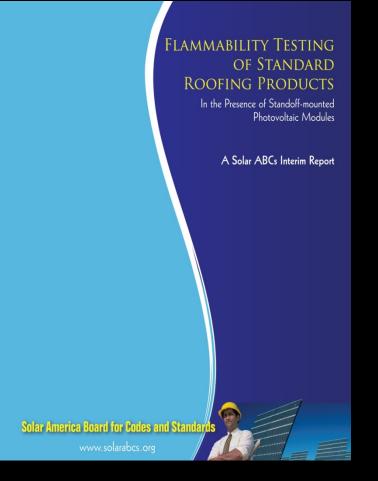
Results

Class C PV & Shingled Roof @ 5" Gap Horizontal Rails

Not compliant (Class A, B or C)

Class C PV & Shingled Roof @ 5" Gap Vertical Rails

Not compliant (Class A, B or C)


Solar America Board for Codes and Standards

Results

The fire classification rating of the PV module is NOT a good predictor of the fire class rating of the PV module and roof as a system.

Interim Report (April 2010)

Solar America Board for Codes and Standards

Further Tests

- Mitigation strategies
- Low slope roofs
- Characterize materials
- Test SEIA proposed exceptions

