PV Product Standards Study Panel

PV Cell: Supply Chain Prequalification Specification

Mani Tamizh-Mani Arizona State University

Acknowledgment:

"This material is based upon work supported by the Department of Energy under Award Number DE-FC36-07GO17034."

"PV Cell - Supply Chain Prequalification Specification"

Why a standard needed?

- Procurement specification for the module manufacturers
- Supply specification for the cell manufacturers

Why now?

- Module manufacturers provide warranty of more than 20 years
 - If the cells fail, module fails!
- Module manufacturers need to handle thinner cells in production
 - If the cells break, then the production equipment need to be modified!
- Module manufacturers RETEST the module design if the cell specification is changed
 - Repeat IEC 61215 tests: Thermal cycling (200 cycles), Damp heat (1000 hours);
 Outdoor exposure (several weeks); Hot spot endurance (several days)

Study Report (Working Draft): Literature Review

- EN 50461: Solar cells Datasheet information and product data for crystalline silicon solar cells
- SEMI standards related to silicon wafers for the electronic industry
- DIN/VDE standards related to solar silicon wafers for the PV industry
- Procurement specifications of module manufacturers
- Supply specifications of cell manufacturers

Standard (Working Draft): Format

- ASTM's equipment/material specification format is followed
- Format could be easily changed to another standard's format (e.g., IEEE, IEC)

Standard (Working Draft): Content

- 1. Scope
- 2. Referenced Documents
- 3. Packing, Marking and Storage
- 4. Process and Wafer Characteristics
- 5. Cell Characteristics
- 6. Declaration Letter for Modifications
- 7. Documentation

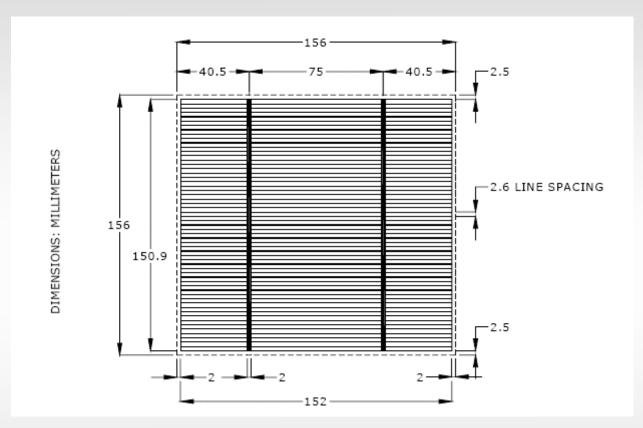
1.Scope

- Provides the minimum required information to identify suitable alternative sources for establishing the supply chain
- •

2.Referenced Documents

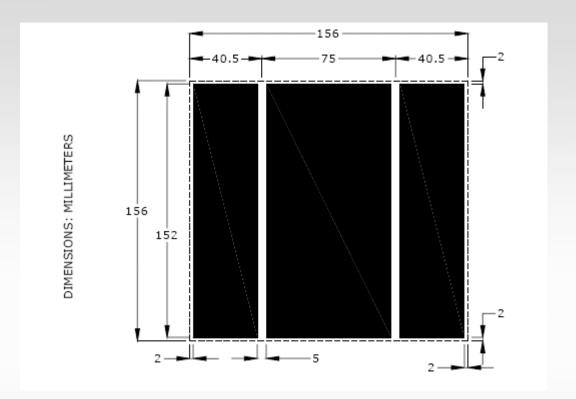
- EN standards
- IEC standards
- SEMI standards
- DIN/VDE standards

3. Packing, Marking and Storage


- Cells accompanied by the packing, marking and storage procedures incuding:
 - Quantity in each pack
 - Ambient conditions for storage
 - Maximum recommended time for storage
 - •

4. Process and Wafer Characteristics

- Adhesion strength of surface layers
- Solderability
 - Peel strength
 - Solder compositions
 - Soldering conditions
 - •
- Nominal dimensions (thickness, length, width etc.)
- Nominal resistivity
- Extent of warping
- •


5. Cell Characteristics

- Non-performance characteristics
 - Edge visual defects
 - Cracked/broken cells during unpacking (for claims purpose)
 - Anti-reflective coating material and thickness
 - Top and bottom semicondutor layer types and thickness
 - Extent of warping
 - Dimensions
 - Total thickness variation
 - Cell breaking strength
 - Diagrammatic representation of metallization (see the figure)
 -

FRONT metallization specification (sample dimensions)

BACK metallization specification (sample dimensions)

5. Cell Characteristics

- Performance characteristics
 - After (>20 kWh/m²) light conditioning
 -

Performance Specification

Performance Parameter	Symbol (Unit)	Value
Short circuit current @ STC	I _{sc} (A)	
Open circuit voltage @ STC	V_{oc} (V)	
Current at maximum power @ STC	I _{mp} (A)	
Voltage at maximum power @ STC	V_{mp} (V)	
Maximum power @ STC	P _{mp} (W)	
Fill f actor @ STC	FF (%)	
Cell efficiency @ STC	(%)	
Cell efficiency tolerance @ STC	(%)	
Production Tolerance @ STC	I _{sc} (%)	
	V _{oc} (%)	
	Imp (%)	
	V _{mp} (%)	
	P _{mp} (%)	
Measurement Tolerance @ STC	I _{sc} (%)	
	V _{oc} (%)	
	I _{mp} (%)	
	V _{mp} (%)	
	P _{mp} (%)	
Temper ature Coefficients @ STC	_lsc (%/°C)	
	_V _{oc} (%/°C)	
	_ _{Imp} (%/°C)	
	_Vmp (%/°C)	
	_Pmp (%/°C)	
	_FF (%/°C)	
Short circuit current @ 25 °C, 200 W/m ²	I _{sc} (A)	
Open circuit voltage @ 25 °C, 200 W/m ²	V _{oc} (V)	
Current at maximum power @ 25 °C, 200 W/m ²	I _{mp} (A)	
Voltage at maximum power @ 25 °C, 200 W/m ²	V _{mp} (V)	
Maximum power @ 25 °C,200 W/m ²	P _{mp} (W)	
Fill factor @ 25 °C, 200 W/m ²	FF (%)	

6. Declaration Letter for Modifications

- Changes in materials and manufacturing process can impact performance, safety and reliability of the modules
- Per IEC 61215, the module design to be retested if cell characteristics change
- For every shipment, a declaration letter is required
- Modifications include, but not limited to:
 - Performance characteristics
 - Non-performance characteristics
 - Change in manufacturing site
 - Stabilization period for the LID
 - •

7.Documentation

- Documentation per relevant sections of ISO 17025
- Certificate of conformity confirming full compliance with the specifications of this standard
-

A Study (Working Draft) PV Cell: Supply Chain Prequalification Specification

Conclusions

- A WORKING DRAFT of a potential standard titled "Crystalline Silicon Terrestrial Photovoltaic Cells Supply Chain Prequalification Specification" has been developed.
- This report is yet to be reviewed by the Steering Committee of Solar ABCs

Recommendations

- A consensus IEEE, ASTM or IEC standard may be developed based on this study report
- To improve this study report further, the comments from the stakeholders are requested, especially for the module manufacturers who purchase cells from other cell manufacturers.

